1 A ug 2 00 8 On the hitting times of quantum versus random walks ∗

نویسندگان

  • Frédéric Magniez
  • Ashwin Nayak
  • Peter C. Richter
  • Miklos Santha
چکیده

The hitting time of a classical random walk (Markov chain) is the time required to detect the presence of – or equivalently, to find – a marked state. The hitting time of a quantum walk is subtler to define; in particular, it is unknown whether the detection and finding problems have the same time complexity. In this paper we define new Monte Carlo type classical and quantum hitting times, and we prove several relationships among these and the already existing Las Vegas type definitions. In particular, we show that for some marked state the two types of hitting time are of the same order in both the classical and the quantum case. Further, we prove that for any reversible ergodic Markov chain P , the quantum hitting time of the quantum analogue of P has the same order as the square root of the classical hitting time of P . We also investigate the (im)possibility of achieving a gap greater than quadratic using an alternative quantum walk. In doing so, we define a notion of reversibility for a broad class of quantum walks and show how to derive from any such quantum walk a classical analogue. For the special case of quantum walks built on reflections, we show that the hitting time of the classical analogue is exactly the square of the quantum walk. Finally, we present new quantum algorithms for the detection and finding problems. The complexities of both algorithms are related to the new, potentially smaller, quantum hitting times. The detection algorithm is based on phase estimation and is particularly simple. The finding algorithm combines a similar phase estimation based procedure with ideas of Tulsi from his recent theorem [Tul08] for the 2D grid. Extending his result, we show that for any state-transitive Markov chain with unique marked state, the quantum hitting time is of the same order for both the detection and finding problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A path integral formula with applications to quantum random walks in

We consider general quantum random walks in a d-dimensional half-space. We first obtain a path integral formula for general quantum random walks in a d-dimensional space. Our path integral formula is valid for general quantum random walks on Cayley graphs as well. Then the path integral formula is applied to obtain the scaling limit of the exit distribution, the expectation of exit time and the...

متن کامل

First Hitting times of Simple Random Walks on Graphs with Congestion Points

We derive the explicit formulas of the probability generating functions of the first hitting times of simple random walks on graphs with congestion points using group representations. 1. Introduction. Random walk on a graph is a Markov chain whose state space is the vertex set of the graph and whose transition from a given vertex to an adjacent vertex along an edge is defined according to some ...

متن کامل

Symmetry in Quantum Walks

A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an ending condition. We derive an expression for hitting time using superoperators, and numerically evaluate it for the walk on the hypercube for various ...

متن کامل

Quantum Random Walks Hit Exponentially Faster

We show that the hitting time of the discrete time quantum random walk on the n-bit hypercube from one corner to its opposite is polynomial in n. This gives the first exponential quantum-classical gap in the hitting time of discrete quantum random walks. We provide the framework for quantum hitting time and give two alternative definitions to set the ground for its study on general graphs. We t...

متن کامل

Simple Random Walks on Radio Networks (Simple Random Walks on Hyper-Graphs)

In recent years, protocols that are based on the properties of random walks on graphs have found many applications in communication and information networks, such as wireless networks, peer-to-peer networks and the Web. For wireless networks (and other networks), graphs are actually not the correct model of the communication; instead hyper-graphs better capture the communication over a wireless...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008